Kamis, November 26, 2009

MEJA PELAYANAN/LOCAL CONTROL PANEL

Meja Pelayanan/Local Control Panel

Dalam sistim persinyalan, yang telah diuraikan dalam posting sebelumnya, kita kenal istilah peralatan luar (Outdoor Equipment) dan peralatan dalam (Indoor Equipment). Salah satu peralatan dalam yang ditempatkan di Ruang PPka (Pemimpin Perjalanan Kereta api) adalah Meja Pelayanan.

Meja Pengendali Sinyal Mekanik

Fungsi peralatan Meja Pelayanan tersbut :

Meja pelayanan merupakan penghubung antara pengendali dengan peralatan persinyalan elektrik dalam melayani pembentukan rute kereta api dan rute langsir maupun memonitor indikasi sinyal-sinyal, trek-trek sirkit, pergerakan kereta api dan langsiran serta kedudukan wesel-wesel dalam wilayah kendali pengucilannya.

Untuk sistim sinyal mekanik, disebut Meja Mistar dan dilengkapi peralatan krek dan tuas hendel untuk menggerakan sinyal dan wesel sesuai dengan tujuan dan arah kereta api yang datang atau berangkat dari stasiun, sedangkan dalam sistim sinyal listrik disebut Local Control Panel (LCP).

Untuk uraian Meja Mistas dan peralatan lainnya dalam sistim sinyal mekanik, akan diuraikan dalam kesempatan lain. Mudah2an penulis diberi kesehatan dan rizki.


Meja Pelayanan Sistim sinyal Listrik jenis Mozaik Panel.

Postingan kali ini, akan diuraikan tentang Meja pelayanan atau istilah dalam International railway standard disebut Local Control Panel. Meja Pelayanan dalam sistim sinyal listrik terdiri dari dua jenis yaitu :
  1. Panel Pengendali ( Mozaik Panel )
  2. VDU ( Visual Display Unit )



Meja Pelayanan Sistim sinyal Listrik jenis VDU.


Persyaratan Utama Meja Pelayanan adalah :

  • Harus menggambarkan tata letak jalur kereta api, kedudukan dan keadaan peralatan sinyal yang terpasang di lintas dalam wilayah pengendaliannya. Wilayah pengendalian dalam stasiun mulai sinyal muka ke sinyal muka.
    Layout Wilayah Pengendalian Meja Pelayanan Dalam Sistim Sinyal Listrik
  • Harus dilengkapi dengan alarm untuk pendeteksi kegagalan ataupun gangguan fungsi peralatan.
  • Harus mempunyai ketahanan dari pengaruh induksi yang ada disekitarnya, baik induksi elektro magnetik maupun induksi lainnya.
  • Harus dilengkapi dengan tombol pelayanan, indikator dan pesawat pencatat ( counter ).
  • Semua tombol harus dilengkapi dengan sirkit pengamat, yang berfungsi apabila satu tombol atau lebih tertekan lebih dari 8 detik, maka alarm akan bekerja atau berbunyi dan pengucilan tidak dapat dilakukan. Hal ini merupakan sistim "fail safe" peralatan, sehingga terhindar dari kesalahan operasi pengendali.
  • Semua tombol mempunyai warna sesuai dengan peruntukannya.


Demikian uraian kali ini, mudah2an bisa di perbaharui dalam postingan berikutnya. 'JANGAN LUPA KITA JAGA DARI KESALAHAN OPERASI MEJA PENGENDALI" Kesalamatan perjalanan kereta api menjadi perhatian utama sebelum memfungsikan LCP!!!!.

Jumat, November 13, 2009

SEJARAH SISTEM KERETA REL LISTRIK DI INDONESIA

Alhamdulillah berkat doa pembaca blog ini, penulis bisa melanjutkan bercerita dan berbagi pengetahuan, khususnya sesuai dengan bidang pengetahuan yang penulis lakukan sejak 18 tahun yang lalu. Mudah2an ini bermanfaat bagi semua orang, mulai dari yang sedang Kuliah, Skripsi dan orang-orang yang berhubungan dengan KERETA API.


Transportasi dengan menggunakan kereta api di Indonesia memiliki sejarah panjang. Telah kita ketahui telah dimulai dari masa kekuasaan kolonial Belanda, yaitu masa Pemerintahan Gubernur jenderal Hindia Belanda Mr. L.A.J. Baron Sloet Van Den Beele di desa Kemijen tanggal 17 Juni 1864 yang dinamai " Naamlooze Venootschap Nederlandsch Indishe Spoorweg Maatschappij-NV.NISM". Pembangunan Jalan Kereta Api antara Kemijen-Tanggung serta dilanjutkan pada tanggal 10 Februari 1870 dibangun Jalan Kereta Api antara Semarang-Surakarta sepanjang 110 Km.




Setelah itu pengembangan Jalan Kereta Api dilakukan di Aceh tahun 1874, Sumatra Utara 1886, Sumatra Barat tahun 1891, Sumatra Selatan tahun 1914 dan Sulawesi tahun 1922 antara Makasar-Takalar.



Setelah itu di tahun 1925/1926 dibangun sistem Kereta Listrik Pertama di Indonesia dengan sistem DC (Direct Current) 1500 Vdc di tiga lintasan yang meliputi :
  • Lintasan Jakarta Kota-Gambir-Manggarai-Jatinegera.
  • Lintasan Jakarta Kota-Kemayoran-Pasar Senin-Jatinegara.
  • Lintasan Jakarta Kota-Ancol-Tanjung Priok.

Sistem elektrifikasi/Catenary Line di tiga lintasan tersebut dicatu dari gardu traksi/Substation dari sistem konfigurasi Motor dengan Generator buatan General Elektric di dua lokasi yaitu di :
  • Jatinegara
  • Ancol
Dengan semakin bertambahnya jumlah penduduk dan pengembangan transportasi Kereta Api Listri di wilayah JABOTABEK, akhirnya tahun 1929 dibangun Lintasan baru yaitu Manggarai-Depok dan Bogor dan dilakukan elektrifikasi dengan dibangunnya Gardu Traksi di Depok dan Kedungbadak dengan menggunakan telnologi air raksa buatan BBC sebagai Penyearah (Rectifier).




Setelah masa kolonial Belanda berakhir, di tahun 1977-1982 dilakukan penambahan dan penggantian teknologi pada gardu traksi dengan sistem penyearah Silicon Rectifier buatan Meidensha (Jepang). Lokasi Gardu Traksi yang dibangun dan dirubah sistem penyearahnya adalah :
  • Gardu Traksi Jatinegara
  • Gardu Traksi Ancol
  • Gardu Traksi Depok
  • Gardu Traksi kedungbadak
  • Gardu Traksi Gambir
  • Gardu Traksi Pasar Minggu
  • Gardu Traksi Bojong Gede.
Pengembangan sistem kereta listrik dilanjutkan di tahun 1983-1987, yaitu dengan dibangunnya Jalur Kereta Listrik baru yang melalui Manggarai-Tanah Abang-Duri- Jakarta Kota dengan dicatu dari gardu traksi dengan sistem teknologi Silicon Rectifier yang dibangun di :
  • Gardu Traksi Karet
  • Gardu Traksi Duri
  • Gardu Traksi Jakarta Kota


Dengan meningkatnya frekuensi KRL dan semakin pendeknya Headway, dilakukan pembangunan Jalan Layang Kereta Api antara Jakarta Kota-Gambir-Manggarai dengan dilengkapi sistem kereta listrik/catenary line di tahun 1991 dengan menambah gardu traksi baru yang menggunakan teknologi Silicon Rectifier dari Meidensha Jepang di lokasi :
  • Gardu Traksi Sawah Besar
  • Gardu Traksi Gondangdia
Di tahun yang sama juga dilakukan pengembangan frekeuensi KA ke arah Depok dari Manggarai , Jatinegara-Bekasi dan Tanah Abang-Serpong. Untuk itu dibangun gardu traksi dengan teknologi yang sama di :

Lintasan Manggarai - Bogor
  • Gardu Traksi Duren Kalibata
  • Gardu Traksi Tanjung Barat
  • Gardu Traksi Universitas Indonesia.
Sedangkan di Lintasan Jatinegara-Bekasi, teknologi yang digunakan GEC Alsthom (Perancis).
  • Gardu Traksi Jatinegara
  • Gardu Traksi Kranji.
Lintasan Tanah abang-Serpong dengan teknologi GEC Alsthom (Perancis)
  • Gardu Traksi Karet
  • Gardu Traksi Limo
  • Gardu Traksi Jurang Mangu
  • Gardu Traksi Serpong.
Lintasan Depok - Bogor yang dibangun tahun 1995-1996, dengan teknologi Siemens (Jerman) di lokasi :
  • Gardu Traksi Citayam
  • Gardu Traksi Cilebut
  • Gardu Traksi Kedung badak.
Lintasan Duri - Tanggerang yang dibangun tahun 1997, dengan teknologi Siemens (Jerman) di lokasi :
  • Gardu Traksi Duri
  • Gardu Traksi Grogol
  • Gardu Traksi Bojong Indah
  • Gardu Traksi Kalideres
  • Gardu Traksi Tangerang



Dalam kaitannya dengan Jaringan Kereta Listrik, sistem jaringan listrik aliran atas yang digunakan adalah sistem kawat kontak tunggal (Single Trolley) dan kawat kontak ganda (Double Trolley). Jaringan listrik aliran atas ini yang umum kita sebut Overhead Contact Wire digunakan sebagai kontak antara pantograph yang ada di atas gerbong rangkaian Kereta Listrik dengan catu daya yang di catu dari Gardu Traksi yang telah di rubah menjadi 1500 Vdc.

Dalam kesempatan lain akan diterangkan mengenai sistim kereta listrik dan bagaimana peralatan pendukung yang dibutuhkan mulai dari Sumber Daya Utama PLN dan Gardu Traksi yang telah di searahkan sehingga menggerakan motor traksi yang ada di Rangkaian Kereta Listrik.

sampai jumpa...............

Sabtu, November 07, 2009

PENGGERAK LIDAH WESEL (POINT MACHINE)

Untuk menggerakan lidah wesel sesuai dengan tujuan dan arah Kereta Api diperlukan peralatan penggerak, baik mekanik maupun listrik. Secara Umum penggerak wesel dapat dibedakan sesuai dengan fungsinya yaitu :
  • Penggerak wesel mekanik terlayan setempat tanpa penguncian dan pendeteksi kedudukan lidah wesel.
  • Penggerak wesel mekanik terlayan setempat dilengkapi dengan pengunci mekanik dan pendeteksi kedudukan normal lidah wesel
  • Penggerak wesel mekanik terlayan setempat dilengkapi dengan pengunci listrik dan pendeteksi kedudukan normal lidah wesel.
  • Penggerak wesel mekanik terlayan pusat dengan dilengkapi dengan pendeteksi kedudukan lidah wesel secara mekanik




  • Penggerak wesel dengan motor listrik terlayan setempat dilengkapi dengan pengunci listrik dan pendeteksi kedudukan normal lidah wesel.


  • Penggerak wesel dengan motor listrik dilengkapi dengan pendeteksi kedudukan lidah wesel.








Secara umum fungsi peralatan penggerak untuk menggerakkan lidah wesel yang dapat dilengkapi dengan fungsi mendeteksi dan mengunci kedudukan akhir lidah wesel secara akurat dengan syarat-syarat sebagai berikut :
  • Kelonggaran lidah wesel yang rapat terhadap rel lantaknya maksimum 3 mm.
  • Harus mempunyai alat pengunci kedudukan akhir lidah wesel
  • Harus mempunyai pendeteksi kedudukan akhir wesel dan dapat dimonitor di ruang Pengendali.
  • Penggerak wesel mekanik terlayan pusat dengan dilengkapi dengan pendeteksi kedudukan lidah wesel secara mekanik, selain persyaratan pada ayat (1) sampai (3) diatas, juga harus memenuhi persyaratan berikut :
  1. Mempunyai langkah gerakan pemindahan lidah wesel sesuai dengan profil rel dari wesel yang digerakkannya.
  2. Dilengkapi dengan alat petunjuk kedudukan akhir lidah wesel melalui tanda wesel.
  3. Penggerak wesel dengan motor listrik dilengkapi dengan pendeteksi kedudukan lidah wesel selain persyaratan diatas juga harus memenuhi persyaratan berikut :
  4. Mempunyai gaya penggerak yang mampu memindahkan posisi lidah wesel sampai kedudukan sempurna sesuai dengan jenis wesel dan ukuran rel.
  5. Motor wesel harus dapat digunakan untuk menggerakan lidah wesel baik dari sisi kiri maupun sisi kanan.
  6. Mempunyai kopling pegas gesek untuk menghindari terjadinya beban lebih pada motor ketika pergerakan lidah wesel terhambat, apabila tidak berhasil mencapai kedudukan akhir, motor wesel akan berhenti dan kembali ke kedudukan semula dalam 12 detik.
  7. Mempunyai pengunci kedudukan lidah wesel.Waktu pergerakan pembalikan Apabila terjadi gangguan wesel, maka wesel harus dapat dilayani secara manual setempat, menggunakan engkol dan yang secara otomatis memutus sirkit listrik ke motor wesel
  8. Apabila wesel terlanggar, tidak boleh terjadi kerusakan pada motor wesel.
  9. Motor wesel harus dapat bekerja dengan tegangan kerja
  10. Memiliki stang pendeteksi kedudukan lidah wesel yang terhubung dengan lidah wesel dan terkunci secara otomatis setelah lidah wesel pada kedudukan yang benar.
Bagaimana cara dan tempat pemasangan peralatan penggerak lidah wesel?. Pemasangannya sebagai berikut :
  • Penggerak wesel harus dipasang di luar batas ruang bebas jalan kereta api untuk keamanan dan untuk keperluan perawatan.
  • Roda wesel sedapat mungkin dipasang di sisi wesel pada arah lurus.
  • Tanda wesel yang dipasang bersama dengan roda wesel harus ditempatkan dekat dengan pemasangan roda wesel.
  • Tempat pemasangan motor wesel harus bebas dari genangan air untuk mencegah timbulnya gangguan terhadap motor wesel dimaksudkan.
  • Stang penggerak, stang pendeteksi dan plat landas kedudukan motor wesel harus di isolasi.
  • Pemasangan motor wesel harus ditambat dengan konstruksi yang kokoh.
  • Motor wesel dapat dilengkapi dengan pelindung terhadap

Selasa, November 03, 2009

JARINGAN KERETA API DI ACEH

Saat ini pemerintah melalui Departemen Perhubungan telah melakukan langkah -langkah pengembangan jalur KA di Jawa, Sumatra dan dikemudian hari di Kalimantan dan Pulau-pulau lainnya. Departemen Perhubungan melalui Direktorat Perkeretaapian dan SATKER ( Satuan Kerja ) berupaya mengimplementasikan Undang-Undang 23 untuk pengembangan Kereta Api di beberapa wilayah Daerah Operasi (DAOP) atau Divre. Salah satu contoh Jalur KA di Aceh, dengan anggaran APBN telah dibangun dan direnovasi beberapa jalur KA Eksisting maupun pengembangan jalur-jalur baru dengan lebar sepur (Track Gauge) 1435 mm bukan lagi seperti zaman Balanda 1067 mm. Kenapa dipilih 1435mm? Hal ini ada kaitannya dengan rencana Trans Asia yang menggunakan lebar sepur 1435mm, yang dimulai dari Vietnam. Secara operasi KA, lebih stabil dan kecepatan KA bisa lebih tinggi. Diharapkan Jalau KA akan saling berhubungan mulai dari Banda Aceh sampai dengan Lampung dan juga tidak menutup kemungkinan akan tersambung dengan jaringan KA di Jawa melalui Proyek Jembatan Terpadu Selat Sunda yang telah direncanakan oleh Pemrov Lampung dan Pemrov Banten melalui koordinasi Departemen Perhubungan.




Foto Wesel dengan Bantalan Beton ( Turnout with Concrete Sleeper) di Aceh




Jalan Rel dengan Lebar Sepur ( Track Gauge) 1435 mm dan Bantalan Beton

Senin, November 02, 2009

SISTEM SINYAL DI JARINGAN KERETA API (SIGNALING SYSTEM)

Dalam sistim persinyalan dibedakan dalam dua kategori penempatan peralatan, yang kita sebut dengan istilah peralatan dalam dan peralatan luar.



Secara defenisi peralatan persinyalan adalah seperangkat fasilitas yang berfungsi untuk memberikan isyarat berupa bentuk, warna atau cahaya, yang ditempatkan pada suatu tempat tertentu dan memberikan isyarat dengan arti tertentu untuk mengatur dan mengontrol pengoperasian kereta api.


Peralatan luar adalah peralatan sinyal yang ditempatkan diluar ruangan operator.

Terdiri dari :

  1. Sinyal, Marka dan Tanda.
  2. Penggerak Wesel
  3. Alat pendeteksi bakal pelanting.
  4. Peralatan pengamanan perlintasan sebidang.


Peralatan dalam adalah peralatan sinyal yang ditempatkan didalam ruangan operator.

Terdiri dari :





Awal mulanya sistim persinyalan menggunakan sistim persinyalan mekanik, yang saat ini masih digunakan di beberapa negara. Dengan berkembangnya teknologi sistim persinyalan, maka sistim persinyalan mekanik telah beralih ke sistim persinyalan listrik. Apa yang dimaksud dengan sistim persinyalan mekanik ?. Sistim persinyalan mekanik adalah sistim persinyalan yang menggunakan media penggerak mekanik untuk setiap peralatan luar, sedangkan sistim persinyalan listrik menggunakan media penggerak listrik untuk setiap peralatan luar.

Minggu, November 01, 2009

LAYOUT JABOTABEK

image001

SISTIM JARINGAN KERETA API JABOTABEK

Kereta api sebagai salah satu moda transportasi yang ada saat ini di Indonesia, khususnya Jawa dan Sebagian Sumatra, merupakan sistem transportasi darat yang paling diharapkan mampu menyediakan kebutuhan Rapid Mass Transportation. Untuk jaringan kereta Api di Jabotabek merupakan sistem angkutan massal perkotaan, yang meliputi wilayah Bogor, Serpong, Tangerang dan Bekasi.
Pada kereta api Jabotabek, dengan sistem jaringan kereta api listriknya, berkembang pesat sebagai salah satu moda transportasi yang diandalkan masyarakat Jakarta khususnya dan masyarakat sekitar umumnya. Untuk itu sistem jaringan kereta api listriknya merupakan faktor teknis utama yang kesiapan dan keandalannya perlu dijaga secara terus menerus.
Sistem kelistrikan kereta api aliran atas / Overhead Contact Wire / Catenary meliputi :
  • Jaringan Overhead
  • Gardu Listrik
  • Sistem Kendali
Dengan semakin meningkatnya lalu lintas kereta, sistem kelistrikan aliran atas akan sangat terpengaruh khususnya pada pola pembebanan. Untuk itu diperlukan pemeliharaan yang sifatnya operasional maupun teknis yang matang dengan cara yang tepat dan sesuai dengan kebutuhan.

Beberapa sistem yang telah diterapkan di sistem kelistrikan kereta api listrik Jabotabek adalah :
  • CEGELEC ( PERANCIS )
  • SIEMENS (JERMAN)
  • MEIDENSHA (JEPANG)
  • BELANDA.
-Bersambung .........

Jumat, Oktober 30, 2009

JALAN TOL CIKAMPEK-PALIMANAN

Pembebasan lahan ruas tol Cikampek-Palimanan telah mencapai 60 persen dari kebutuhan total tanah 887 ha. Direktur Jenderal (Dirjen) Bina Marga Hermanto Dardak mengatakan pihaknya terus berupaya mempercepat ruas tol sepanjang 116 kilometer tersebut.

Disela-sela peninjauan ke lokasi pembangunan tol JORR W1 ruas Kebun Jeruk-Penjaringan, Rabu (21/10), Hermanto mengungkapkan Direktorat Jenderal (Ditjen) Bina Marga saat ini juga sedang bernegosiasi dengan Departemen Kehutanan (Dephut) terkait adanya tanah Perhutani dan Perkebunan yang terkena proyek tol tersebut.

Direktur Jalan Bebas Hambatan dan Jalan Kota Ditjen Bina Marga Harris Batubara menambahkan, Ditjen Bina Marga tengah mengajukan surat dispensi penggantian lahan milik Dephut tersebut. Menurut Harris lahan milik Perhutani dan Perkebunan yang terkena pembebasan lahan untuk tol Cikampek-Palimanan masing-masing seluas 200 ha dan 80 ha.

“Bila tanah-tanah tersebut berhasil kami selesaikan dengan Departemen Kehutanan, maka luas lahan Cikampek-Palimanan yang telah dibebaskan totalnya akan menjadi 80 persen,” ungkap Harris.

Harris mengakui, proses penggantian lahan Dephut tidak mudah, karena pihaknya harus mengganti lahan tersebut dengan luas dua kali lipat. Ditjen Bina Marga sendiri sedang mencari lokasi lahan dan menginventarisir jumlah pohon dan tanaman pengganti yang layak sesuai permintaan Dephut.

“Sesuai aturan, khusus di pulau Jawa, maka penggantian tanah luasnya harus dua kali lipat, kami berusaha agar lokasi lahan pengganti berada di provinsi dan kabupaten yang sama,” terang Harris.

Selain tengah menyelesaikan pembebasan lahan dengan Dephut, Ditjen Bina Marga juga terus melakukan musyawarah dengan para pemilik tanah untuk penyelesaian pembebasan lahan lainnya yang tersisa.

Ruas tol Cikampek-Palimanan merupakan salah satu dari 15 ruas proyek pembangunan tol Trans Java yang akan menghubungan sisi barat dan timur pulau Jawa dalam rangka memperlancar distribusi arus kendaraan dan menggerakkan roda perekonomian. Ruas Cikampek-Palimanan dimiliki oleh PT Lintas Marga Sedaya dengan total nilai investasi mencapai Rp 7 triliun.

Untuk mendukung pembangunan tol tersebut, PT LMS telah mendapat dukungan dana pinjaman dari sindikasi perbankan senilai Rp 5 triliun. Sejumlah bank yang yang memberikan pinjaman tersebut yaitu Bank Mandiri, BCA, BNI, BRI, Bank Panin, Bank Jabar, Bank Bukopin, Bank Jatim, dan Bank DKI.

Pemerintah Segera Keluarkan Perppu Pembebasan Lahan

Benang kusut proses pembebasan lahan bakal segera terurai. Pasalnya, pemerintah akan segera mengeluarkan Peraturan Pemerintah Pengganti Undang-undang (Perppu) soal pembebasan lahan untuk proyek infrastruktur.

Menteri Perindustrian M.S. Hidayat mengatakan, proses pembebasan lahan selama ini memang menghambat pengembangan infrastruktur, terutama untuk proyek jalan tol. ''Perppu nya akan segera keluar. Itu masuk dalam (program) 100 hari. Nanti Pak Boediono (Wapres, Red) yang mengumumkan,'' ujarnya di Kantor Menko Perekonomian kemarin (28/10).

Menurut Hidayat, Perppu tersebut sudah dimatangkan di internal pemerintah sebagai alternatif sebelum Rancangan Undang-undang (RUU) Pembebasan Lahan dibahas dan disahkan di DPR. ''Ini sebetulnya usulan saya sejak di Kadin,'' ujarnya.

Hidayat menyebut, gara-gara hambatan dalam pembebasan lahan tersebut, dari target pembangunan 1000 km jalan tol, yang terealisasi hanya 40-60 km. Merujuk data dari Departemen Pekerjaan Umum (PU), sejak pemerintah membangun jalan tol pada 1978 hingga 2009 atau sekitar 31 tahun, hanya 700 km tol yang berhasil dibangun. Artinya, setiap tahun rata-rata hanya terbangun 25 km tol baru.

Pada periode 2004-2009, pemerintah menargetkan 3.000 km jalan tol terbangun. Faktanya, hingga saat ini baru 1.150 km saja yang berhasil tandatangan kontrak dengan investor.

Sebelumnya, Menteri PU Djoko Kirmanto mengatakan, Perppu pembebasan lahan untuk proyek infrastruktur merupakan PR (pekerjaan rumah) yang belum sempat diselesaikannya pada periode 2004 - 2009. ''Aturan yang selama ini menghambat pelaksanaan program infrastruktur, terutama pembebasan tanah, akan segera disempurnakan,'' ujar Djoko.

Salah satu sumber di Kadin menyebut, nantinya, seluruh regulasi soal tata ruang, akan ditarik langsung menjadi kewenangan Presiden. Ke depan, papar Hidayat, peruntukan lahan-lahan akan ditata kembali, untuk melestarikan hutan dan memanfaatkan lahan lainnya untuk kepentingan produktifitas, tanpa mengurangi ketentuan mengenai lingkungan. ''Nanti akan ada forest management yang benar-benar baru,'' katanya


Jumat, Oktober 23, 2009

ALAT PENDETEKSI KA

Alat pendeteksi Bakal Pelanting berfungsi untuk mendeteksi keberadaan kereta api/bakal pelanting pada suatu bagian jalan rel.

Jenis-Jenis alat pendeteksi KA ataupun istilah kereta api "Bakal Pelanting" seperti Lori motor dll sebagai berikut :

  • Trek sirkit ( Track Circuit ), Alat Pendeteksi jenis trek sirkit bekerja berdasarkan terhubungsingkatnya kedua rel oleh roda dan gandar bakal pelanting dan terdiri dari jenis :
  1. Trek Sirkit Arus Searah ( DC).
  2. Trek Sirkit Arus Bolak Balik (AC)
  3. Trek Sirkit Frekuensi Suaran (AF)
  4. Trek Sirkit Impulse Tegangan Tinggi ( HVI)

  • Jenis Trek Sirkit





















  • Penghitung Gandar ( Axle Counter), Alat Pendeteksi Bakal Pelanting jenis ini bekerja berdasarkan penghitungan jumlah gandar bakal pelanting/Kereta Api yang melalui alat pendeteksi roda yang dipasang disisi rel untuk menghitung masuk/keluar, ke/dari bagian jalan rel yang bersangkutan.


  • Jenis Penghitung gandar
















Persyaratan yang diperlukan :
  • Alat Pendeteksi harus mampu memberikan kemudahan bagi pengawasan dan perawatan .
  • Alat pendeteksi harus mampu mendeteksi keberadaan bakal pelanting secara akurat.
  • Mekanisme Kerja peralatan tidak boleh terganggu oleh induksi Elektro Magnetik lain.
  • Lokasi pemasangan di Emplasemen/Area Stasiun atau di Lintas (antar stasiun).
  • Kondisi sekitar tempat pemasangan, apakah daerah banjir atau tidak.
  • Kebutuhan Teknis.

Pemasangan :
  • Trek Sirkit Arus Searah dipasang untuk lintas yang tidak menggunakan Jaringan Listrik Aliran atas ( Catenary).
  • Trek Sirkit Arus Bolak Balik dipasang untuk lintas yang menggunakan jaringan Listrik Aliran atas Arus Searah.
  • Trek Sirkit Frekuensi Suara dipasang untuk lintas yang menggunakan Jaringan Listrik Aliran Arus Bolak Balik
  • Trek Sirkit Impulse tegangan tinggi dipasang pada lintas yang menggunakan Jaringan Listrik Arus Searah dan Bolak Balik.
  • Trek sirkit dipasang pada kondisi jalan rel yang tidak menggunakan bantalan besi, karena dengan cara kerja yang telah diutarakan diatas dengan sistim sirkit (loop line). Hal ini untuk menghindari terjadinya hubung singkat (Short Circuit) sebelum relay bekerja.
  • Jalan rel yang digunakan harus mempunyai tahanan ballast minimum 2 ohm/km.
  • Gandar bakal pelanting/Kereta mempunyai tahanan maksimum 0,3 ohm/roda.
  • Rel yang digunakan mempunyai tahanan maksium 0,05 ohm/km.
  • Penghitung Gandar dipasang di jalan rel yang menggunakan bantalan besi, kayu dan beton.
  • Penghitung Gandar dipasang di jalan rel yang sering tergenang air.
  • Penghitung gandar dipasang di jalan rel yang terdapat konstruksi jembatan besi, persilangan dengan jalan rel lainnya, dan perlintasan sebidang yang tidak dapat diisolasi dari arus liar.



Dilain waktu akan diutarakan bagaimana mendisain sistim pendeteksi bakal pelanting/kereta.






Kamis, Oktober 22, 2009

SPESIFIKASI TEKNIS WESEL UIC54

TECHNICAL SPECIFICATIONS FOR UIC54 SIMPLE TURNOUT
This specification shall be applied for the supply of R54 simple turnout concerning wroks of design, manufacture, inspection and testing for Railway Project in Indonesia, which are used to ensure consistent products.



Applicable Standard and Specifications All track materials and works for this specification shall be designed, manufactured and performed in conformity with the latest revision of relevant standards as follows :
  • JIS (Japan Industrian Standards)
  • UIC (Union International of Railways)
  • ASTM (American Society for Testing and Materials)
  • AREA (American Railway Engineering Association)
  • AREMA (American Railway Engineering and Maintenance of way Association
  • -
    1.3 Warranty period shall remain valid for 5 years
    2. Scope of Supply
    2.1 The manufacturer quality certificate
    The manufacturer shall operate an independently approved and audited quality assurance system conforming to the requirements of ISO 9002 or higher level (ISO 9001). The approval certificate is to be presented as an annex of the supplier's qualification/bidding documents.
    2.2 The Supply shall include
    2.2.1 All switch rails, stock rails and closure rails with rail fastenings
    2.2.2 Manganese crossing
    2.2.3 Check rail assembly
    2.2.4 Accessories including bolts, nuts, spring washers, joint bars, tie plates, fillers and screw spikes
    2.2.5 PC sleepers
    2.2.6 Submissions of Technical Documents
    2.3 Scope of Design and Drawing productions
    The Contractor shall prepare standard layout drawings for Turnout with detailed drawings for the major components giving leading dimensions and setting out data for installation.
    3. Basic Specifications of Turnout
    3.1 General
    3.1.1 Rails shall be set in vertical within turnout.
    3.1.2 The track gauge shall be 1067 mm.
    3.1.3 There shall be zero cant throughout the layout.
    3.1.4 The standard sleeper spacing shall be 600 mm
    3.2 Design Criteria
    3.2.1 Maximum train speed for design purpose shall be 120 km/hr
    3.2.2 Maximum cant deficiency is limited within 70 mm.
    3.2.3 Turnout speed shall be maximum 120 km/hr in straight and 40 km/hr in curved line.
    3.2.4 The axle load of vehicle shall be 18 tons.
    3.3 Geometry
    The basic geometries of turnouts shall be tan 1 : 12th
    3.4 Trackforms
    The turnout shall be supported on the PC sleeper in ballast track.
    3.5 Crossings
    Mono block high manganese crossings should be produced according to UIC code 866-O.
    3.6 Sleeper
    Sleeper shall be PC sleeper in accordance with AREMA-part 4-1996 and AREA-Chapter 10-part 1- 1996.
    3.6.1 Concrete
    min. 150 mm cube compressive strength:
    At 28 days : 60 Mpa
    At Prestressing : 30 Mpa
    3.6.2 Steel
    min. 22 NOS Ø2,9 mm x 3 profiled strands, low relaxation prestressing force : 631 kN
    3.6.3 Stirrups
    Diam = 4 mm, low carbon steel wire MSW-B (JIS G 3532). Tensile Strenght : 441-932 Mpa
    3.6.4 Weight
    Approx. 128 Kg/meter
    3.6.5 Marking
    Each sleeper to be indented marked with Manufacture’s Abbreviation + Turnout Type + Sleeper Number + Manufacturing Year
    3.7 Rail fastening systems
    The standard rail fastening systems of turnout shall be elastic fastening system.
    This system chosen must give the stock rail the right elasticity with approximately 11,800 Newton elastically to absorb any impact due to overrunning.
    3. 8 Baseplate Anchorage
    The holding down for each baseplate on PC sleeper shall be performed by bolts and nuts.
    4. Technical Specification of major components
    4.1 General
    4.1.1 All proprietary components used shall be subject to be reviewed by the Engineer.
    4.1.2 The major components shall incorporate materials and technical standards in accordance with applicable specification. As for special materials to be required and not to be specified herein they shall be of a general standard and the quality shall be compatible with corresponding specification which shall be submitted to the Engineer for review.
    4.2 Rails
    4.2.1 Stock rails shall be UIC54 profile with 900A grade head-hardened.
    4.2.2 Closure rails shall be UIC54 profile with 900A grade head-hardened.
    4.2.3 Running rails shall be UIC54 profile with grade 900A steel.
    4.2.4 Check rails shall be UIC33 profile with grade 1100.
    4.2.5 Switch rails shall be UIC54B asymmetrical rail with min. 310 Brinell hardness with standard grade 900A steel. The switch rail shall be forged to match the UIC54 rail profile at the end.
    4.3 Crossings
    4.3.1 The detail specification of manufacturing and inspection for manganese crossing shall be carried out in accordance with UIC866-0.
    4.3.2 High manganese crossing should be welded to four pieces of rails by means of flash-butt welding method as per drawings.
    4.4 Insulated Joints
    All insulated joints in the turnouts shall be Glued Insulated Joints with six (6) hole fish plate glued to the UIC54 rail by synthetic resins, insulating insert, and high tensile bolts tied strongly.
    4.5 Distance Blocks or Fillers
    The material to be used for distance block or fillers shall be in accordance with JIS G5501, FC200 (Gray Iron casting-class 3) conforming to the requirement as specified below:
    4.5.1 Diameter as cast of test specimen: 30mm
    4.5.2 Minimum tensile strength: 200 N/mm2
    4.5.3 Maximum hardness: 223 HB
    4.5.4 Distance blocks shall be ground if necessary during assembly to give the correct fit against the web of the rail.
    4.6 Bolts
    All bolts and nuts for fastening shall be galvanized with at least 8 thickness and flat washers shall have a suitable coating as well.
    5. Manufacture
    5.1 General
    5.1.1 Turnout components shall be manufactured in accordance with the best procedures applicable at the time and as reviewed by the Engineer prior to the start of manufacture.
    5.1.2 No part of the assembly shall be bruised or otherwise damaged during any manufacturing or assembly operation.
    5.1.3 All turnout components shall be machined and fabricated strictly to the drawings and technical specification.
    5.2 Tolerances of manufacturing and assembly
    The turnout shall be assembled and manufactured according to the tolerances given in Table 2.
    5.3 Templates and Gauges
    Templates and gauges used in machining, assembly of components and also marking templates shall be checked and calibrated before manufacturing begins.
    5.4 Machining of Switch & Crossing Rails
    5.4.1 The method of holding the rails and components to a machine and the methods of machining shall be such that the finished machined face shall follow the design alignment.
    5.4.2 Embossed rail information on the web covered by block faces or glued insulated joints shall be removed by grinding.
    5.4.3 No welds or joints shall be allowed within the sliding portion of the switch rail.
    5.4.4 The design of the layout shall be such as to prevent the switch rail toes from lifting into the path of an approaching wheel.
    5.5 Cutting of Rails
    5.5.1 Rails cut to length shall be cold cut square across the section. No part of the rail shall be flame cut. All burrs shall be removed and the ends smoothed.
    5.5.2 Rail ends which are to be cut to length on site or joined by welding shall not be drilled.
    5.5.3 Closure rails shall be cut to fit the appropriate space at 20 mm without gaps for tight jointed fishplates or flash butt welds unless otherwise stated.
    [Table 2] Tolerances of manufacturing and assembly
    PART
    ITEM
    TOLERANCE
    General Tolerances
    Rails cut to length
    ± 5mm
    Perpendicularity of rail end
    (Vertical transverse)
    Within 1.0mm
    Layout Tolerances
    Track gauge
    (in factory)
    Main line
    ± 1.0mm
    Diverging
    ± 1.0mm
    Flangeway
    ± 2mm
    Turnout lead
    ± 10mm
    Perpendicularity of switch
    ± 2mm
    Cross level
    ± 2mm
    Longitudinal level
    ± 2mm
    Toe opening
    0 , +1mm
    Turnout offsets
    ± 2mm
    Baseline offsets
    ± 2mm
    Sleeper spacing
    ± 10mm
    Drilled holes
    Height
    ± 1mm
    Longitudinal position
    from datum end
    ± 1mm
    Diameter of bond holes
    ± 1mm
    Switches
    Stock and switch
    machining to gauge
    ± 0.5mm
    Top planning of switch
    ± 0.5mm
    Final height at toe end
    ± 1.0mm
    Gap between rail heads
    Max. 1.0mm
    Gap between rail and distance blocks
    Max. 1.0mm
    5.6 Bending of Rails
    5.6.1 Every endeavor must be made to remove machining marks, particularly those indenting the surface in a transverse plane, around the point where a bend (set) is to be made.
    5.6.2 If a bend is to be applied to a rail which has had the foot machined, the corners created by the machining shall have a 6 mm minimum radius applied to the outside of the bend in such a manner that any marks produced in applying the radius are in the longitudinal direction.
    5.7 Drilling of Rails
    5.7.1 All holes shall be drilled in accordance with the applicable specification.
    5.7.2 No holes additional to those shown on the drawings or specified herein shall be introduced into the rail to aid machining or assembly.
    5.7.3 No holes other than bond holes shall be plugged.
    5.8 Manganese Crossing
    The casting of high manganese steel content shall be made in accordance with UIC 866 - O
    6. Identification
    6.1 Branding
    6.1.1. Rail
    Brand marks shall be rolled in relief on one side and in the middle of the web of each rail. The brand marks in the rail shall be clearly legible and shall be 25 mm high raised to at least 0.8 mm and 1.5 mm maximum.
    The branding line to denote the steel grade shall be 40 mm in length for the long branding line and 20 mm in length for the short branding line.
    The brand marks shall include:
    a. the identification of the mill,
    b. the steel grade,
    c. the last two figures of the year of manufacture,
    d. the month of manufacture,
    e. the profile identification.
    6.1.2. Crossing
    Each casting shall bear in relief, so as to be readily visible. These mark shall be located as shown on drawings submitted for approval by the Contractor; they shall be between 20 and 40 mm high
    The brand marks shall include:
    a. The manufacturer’s mark
    b. The month of manufacture in Roman numerals and the last two figures of the year of manufacture.
    c. Reference number (order number or such other symbol as the purchaser) may require.
    d. The symbol of the rail profile and angle of crossing, or simple the crossing type symbol
    e. The serial number by crossing type and an arrow showing the direction of casting the metal
    6.2 Hot stamping
    In addition to the branding requirements of sub-clause 6.1 each rail shall be identified by a numerical and/or alphabetical code system, hot stamped on the non-branded side of the rail web by machine and each rail shall be hot stamped.
    The figures and letters used shall be clearly legible and shall be 16 mm high. The letters and numbers shall be on a 10O angle from the vertical and shall have rounded corners. The stamping shall be between 0.5 mm and 1.5 mm in depth along the centre of the web.
    The identification system employed shall be such as to enable the hot stamped marking to be collated with:
    a) the number of the heat from which the rail has been rolled,
    b) the number of the strand and position of the bloom within the strand, and
    c) the position of the rail within the bloom (A, B,C ............. ; Z is reserved for the last rail of the bloom).
    Example: 1234 A 102
    1234 : the number of the heat
    102 : 1 : the number of the strand
    02 : the position of the bloom within the strand
    A : the position of the rail within the bloom
    7. Assembling
    7.1 General
    7.1.1 The bottom of the rail providing a common support in an assembly shall be in the same plane within 1mm.
    7.1.2 The switch and stock rails shall bear evenly on all slide base plates when placed on a plane surface, due allowance being made for baseplate camber
    7.1.3 When in the closed position, with the stock rail to the correct alignment, the switch rail shall bear evenly against the stock rail throughout the length of the head planning and against stopper or distance blocks without external aid.
    7.2 Layout Requirements
    7.2.1 Where turnout items are to be supplied complete with base plates, they shall be built into the item before dispatch.
    7.2.2 All layouts shall be laid down to a horizontal baseline. Curves must be set out to offsets from the baseline or as shown on the Drawings. This information is to be incorporated into the junction layout drawings.
    8. Test and Inspection
    8.1 General
    8.1.1 The Contractor shall be responsible of performing inspection and testing for all materials, consumables to demonstrate and verify that all the requirements of specifications have been met.
    8.1.2 The Contractor shall submit I.T.P (Inspection & Test Plan) for turnout to be approved by the Engineer in order to clarify the witness point and hold point of each manufacturing process of turnout.
    8.1.3 The manufacturer shall provide all gauges and equipments necessary for the inspection by the Engineer of the turnout components, assemblies and layouts.
    8.2 Product Qualification Tests
    8.2.1 The major components identified by the Engineer shall be inspected and tested by the manufacturer and the Engineer or the Representative for the accuracy and compliance with the Specification prior to dispatch at the Contractor's manufacturing facility unless otherwise specified.
    8.2.2 The Contractor shall submit two copies of inspection and test report after the completion of each inspection or test.
    8.3 Pre-Assembly Tests
    8.3.1 One of turnout shall be pre-assembled in the workshop and jointly inspected with the Engineer prior to being dismantled into sections small enough to be delivered to site.
    9. Delivery
    9.1 After completion of a successful inspection, the layout shall be disassembled for shipment to site.
    9.2 Switch rails shall be securely fixed to the stock rail with wire or other suitable means before lifting to protect the assembly from damage during handling and transport. The weight of all sub-assemblies shall be clearly indicated.
    9.3 Where necessary to avoid crippling the rail and for safety, two cranes and/or lifting beams shall be used for lifting. Safe lifting points shall be marked on the components and assemblies by the manufacturer.
    9.4 To protect individual items from damage, all loads shall be securely fastened down with straps in such a way as to prevent distortion or movement during transport.
    9.5 All crossings shall be fully supported by a lifting cradle.
    9.6 The use of chains is prohibited.
    9.7 All Special Track work is to be given a spray coat of red oxide primer paint, bitumen paint or similar prior to shipment. All steel work is to be shipped as below deck cargo, or containerized.
    10. Packing
    The Contractor shall provide all packing, including crate and marking according to the Contractor's standard which is fully compatible with the following;
    10.1 Each case, crate or package shall be waterproof of robust construction and suitable for the intended purposes.
    10.2 Each case, crate or package shall be legibly and indelibly marked in large letters with the site address, contractor number, opening points and other markings as necessary to permit materials to be readily identified and handled during transit and when received at site.
    10.3 Each case, crate or package shall contain a comprehensive packing list showing the number, mark, size, weight and contents together with any relevant drawings. A second copy of the packing list shall be enclosed in a watertight enclosure on the outside of each case or package.
    Distribution of additional copies of each packing list shall be in accordance with the Engineer's instruction.
    10.4 All items heavier than 100 kg shall be marked on the outside of the case to show the gross and net weight, the points for slinging, and where the weight bearing.
    10.5 Care shall be taken to prevent movement of items within cases, crates or packages by the provision of bracings, straps and securing bolts as clearly identified by well-secured metal labels on which the quantity and name of the parts or catalogue number have been stamped
    10.6 All packing shall be free from sharp edges to prevent injury to person or other objects.
    10.7 Each bulky/heavy case, crate or package shall include wedge for easy loading and unloading by mechanical handling equipment such as forklift truck.
    11. Flag of Shipment
    Transportation of the material for the project will be preferable to use the Indonesian flag shipment or shipment arrangement through an Indonesian Freight Forwarding Company.










PEMBANGUNAN JALUR GANDA ANTARA STASIUN PURWOKERTO-STASIUN KROYA.

Revitalisasi pekeretaapian merupakan program yang dicanangkan sebagai bentuk tanggungjawab pemerintah terhadap kebutuhan masyarakat...